



Comparative Assessment of 3D Models Accuracy at Building Level Pleiades and WorldView-1 stereo pairs imagery

# Pléiades Days 2014 / 3D Thematic Session

Dorothea Aifantopoulou & Sideris Paralikidis, GEOAPIKONISIS SAPGE, Athens, Ellas





- Benefits and purpose of use
- Area of Interest Characteristics
- Satellite imagery & Other Input data
- Technical and scientific approach & methods

-1-

- Results:
  - Qualitative Assessment
  - Quantitative Findings
- Concluding Remarks



## Benefits and purpose of use



## **Technology background**

| During the last decades a significant number of Very High Resolution (VHR) satellite data with spatial |
|--------------------------------------------------------------------------------------------------------|
| resolution higher than 1 meter are available for public use.                                           |

The production of 3D surface models in urban fabric areas, using satellite (VHR) stereo data, is a popular theme in geo-sciences.

## Requirement

Certain public and/or private domain bodies need accurate information of height changes at building level in the context of monitoring or planning activities.

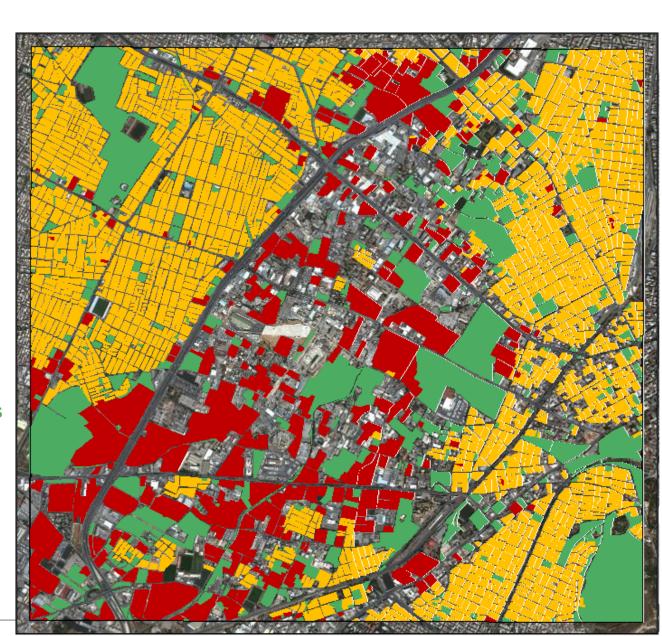
## An Approach...

- Operational Production/ Update of accurate 3D surface models accounting for existing buildings' geometries.
- Satellite platform free methodology and consistency of the results

#### A case

- A comparative assessment referring to the outcome of satellite stereo-pairs processing acquired by the Pleiades and the WorldView-1 sensors.
- Buildings' footprints geometries integration in the process; Production of 3D urban fabric models through focusing on buildings (processing and results' evaluation).

02.04.2014, Toulouse


## **Area of Interest Characteristics**



## **Eleonas district**

Near to Athens' city center 17.400 acres

- Financial Activities
  - ✓ Industrial plants
  - ✓ Light manufacture units
  - ✓ Commercial activities
- Urban fabric (residential)
- Urban environment enhancement opportunities
  - ✓ Non used Open Spaces
  - Scattered Byzantine & Contemporary Monuments
  - ✓ Low quality road network
  - ✓ Green Areas



# Satellite imagery & & Other Input data 1/3



#### WorldView1

Acquisition Date: 2009.07.19

Dynamic Range: 11-bits

Scene 1 Scene 2

Sun Azimuth (mean): 134.40 Scene 1 Scene 2 Scene 2

Off-Nadir (mean): 67.40 67.50 Scene 1 Scene 2 22.20 28.80





Mode: Pan
Spatial Res: 0.5 m

#### Pleiades

Acquisition Date: **2012**.12.25 Dynamic Range: 12-bits

Scene 1 Scene 2
Sun Azimuth (middle): 163.13 162.89

Sun Elevation Scene 1 Scene 2 (middle): 26.91 26.85

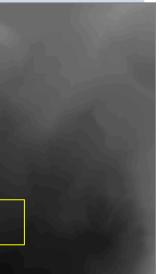
(middle): 26.91 26.85 Scene 1 Scene 2

Across track (middle): 1.96 5.85

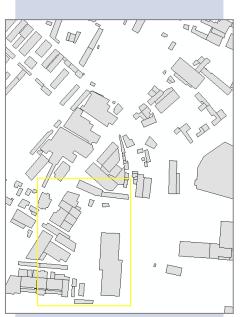









## DTM


## DSM

# **Building footprints**











Raster

2007

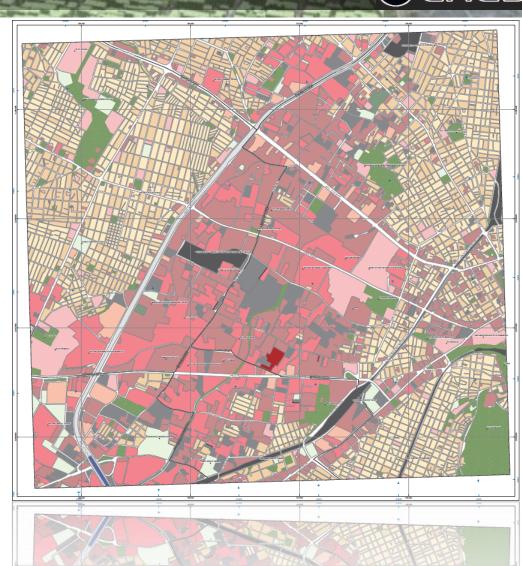
| Format:       | Raster    |
|---------------|-----------|
| Ref. year(s): | 2000      |
| Accuracy:     | (Z) 2,5 m |
| Spat. Res:    | 10 m      |

|         | _ |
|---------|---|
| Raster  |   |
| 2007    |   |
| (Z) 1 m |   |

0,2 m

| Vector     |
|------------|
| 2007,09,11 |
| (X, Y) 1 m |

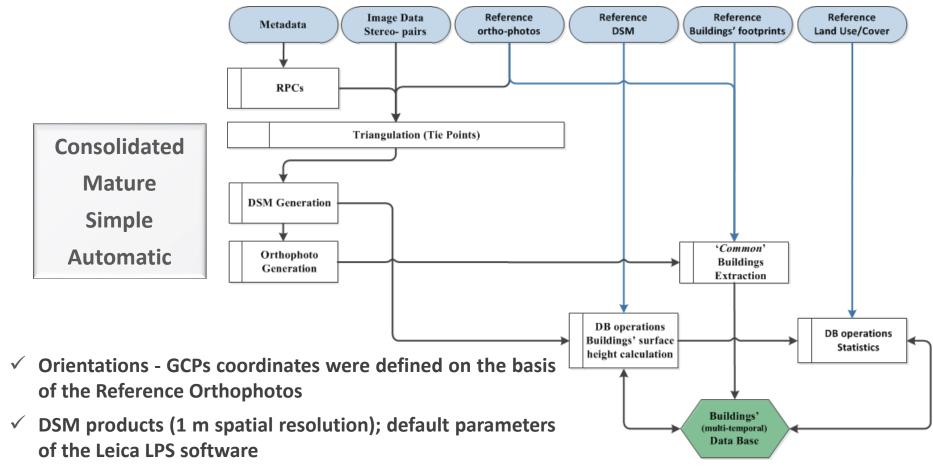
| า | (X, Y) 0,6 m |
|---|--------------|
|   |              |


2 m

# Satellite imagery & & Other Input data 3/3






# URBAN ATLAS NOMENCLATURE MMU 0,05 HA



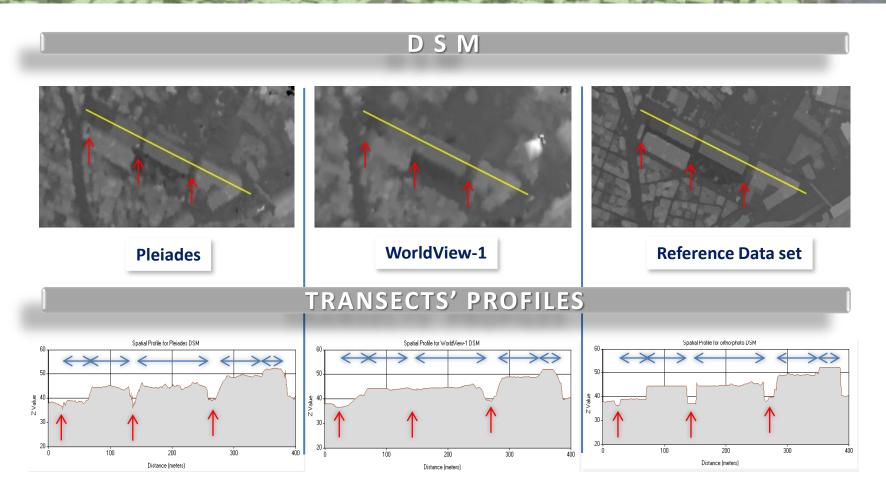
Geoapikonisis s.a.

# Technical and scientific approach & methods





- √ Main artefacts (spikes, holes), represent the ~ 1,5% of the AOI (both data sets)
- √ ~ 28.000 buildings present at the multi-date imagery; reference data/2007, WorldView-1/2009 & Pleiades/2012
- ✓ The average height of the buildings was calculated and accounted for the analysis.




# Results - Qualitative Assessment 1/2





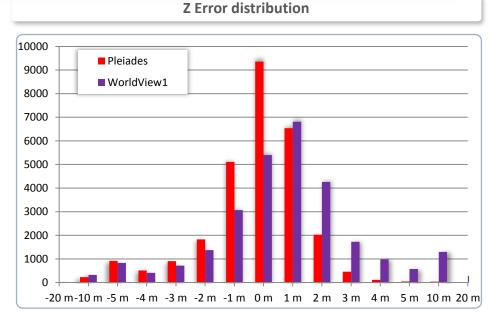




The DSM derived from the Pleiades data processing better fits to the Reference data set



#### **OVERALL ASSESSMENT**


- ☐ Buildings (~28.000) present/ common to all the data sets
  - ✓ Surface (height) difference calculation : *Z Error*
  - ✓ Satellite data DSM towards the Reference Data set

## **STATISTICS**

| _               |                   |                   |  |  |  |
|-----------------|-------------------|-------------------|--|--|--|
|                 | World View 1      | Pleiades          |  |  |  |
| Absolute values | 2.05 m            | 1.37 m            |  |  |  |
| Average Error   | 0.26 m            | -0.83 m           |  |  |  |
| Standard Dev    | 3.32 m            | 2.09 m            |  |  |  |
| Range           | -32.0 m to 30.0 m | -31.0 m to 13.5 m |  |  |  |

**Z Error Analytical Data** 

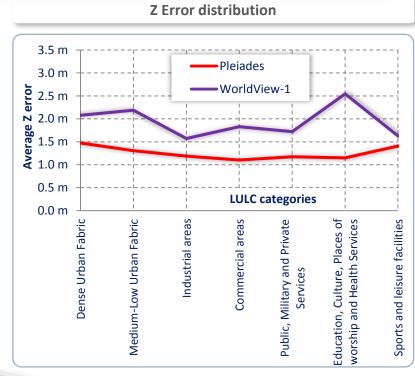
- Both data sets enable the production of "accurate" DSM
  - ✓ Zero difference occurrences of the DSM resulting from the Pleiades data are almost twice as much as those resulting from the WV-1 data processing
  - ✓ Narrower Z error distribution results for the Pleiades DSM



# **Results - Quantitative findings 2/3**



# ASSESSMENT per LAND COVER/ USE


- Buildings (~28.000) present/common to all the data sets
  - ✓ Z Error Analysis for seven different types of Cover/ Use

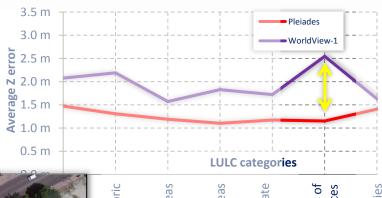
## **STATISTICS**

| Z Error Analytical Data                 |                    |                        |              |      |                        |          |      |  |
|-----------------------------------------|--------------------|------------------------|--------------|------|------------------------|----------|------|--|
|                                         |                    |                        | WORLD VIEW 1 |      |                        | PLEIADES |      |  |
| Land Use/ Cover                         | No Of<br>Buildings | Mean<br>(abs)<br>error | MIN          | MAX  | Mean<br>(abs)<br>error | MIN      | MAX  |  |
| Dense Urban Fabric                      | 14302              | 2.1                    | -23,2        | 19,6 | 1.5                    | -20,4    | 8,3  |  |
| Medium-Low Urban<br>Fabric              | 8613               | 2.2                    | -28,2        | 29,7 | 1.3                    | -21,6    | 5,9  |  |
| Industrial areas                        | 1479               | 1.6                    | -32,4        | 15,7 | 1.2                    | -18,7    | 13,4 |  |
| Commercial areas                        | 126                | 1.8                    | -16,2        | 10,5 | 1.1                    | -7,8     | 4,5  |  |
| Public, Military &<br>Private Services  | 2969               | 1.7                    | -25,0        | 18,1 | 1.2                    | -31,0    | 8,8  |  |
| Education, Culture,<br>Worship & Health | 406                | 2.5                    | -20,0        | 26,5 | 1.2                    | -13,8    | 4,8  |  |
| Sports & Leisure                        | 56                 | 1.6                    | -5,4         | 9,2  | 1.4                    | -11,3    | 6,7  |  |

#### **Similar Performance**

PLEIADES 2 (0%) occurrences  $-20 \le Z Error \le 20 m$ **23160** (83%) occurrences -2 ≤ Z Error ≤ 2 m




WV-1 36 (0%) occurrences  $-20 \le Z Error \le 20 m$ 19770 (71%) occurrences  $-2 \le Z Error \le 2 m$ 




## **BUILDINGS WITH NON – FLAT ROOFS**

- ☐ The LU/LC category: Education, Culture, Places of worship and Health Services
  - √ it is characterized by buildings height differentiations

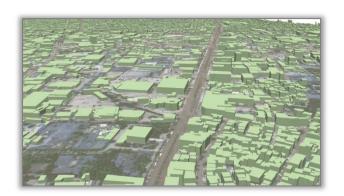
|                                         | No Of<br>Buildings | WORLD VIEW 1           |       |      | PLEIADES               |       |     |
|-----------------------------------------|--------------------|------------------------|-------|------|------------------------|-------|-----|
| Education, Culture,<br>Worship & Health |                    | Mean<br>(abs)<br>error | MIN   | MAX  | Mean<br>(abs)<br>error | MIN   | MAX |
| Troising & ricular                      | 406                | 2.5                    | -20,0 | 26,5 | 1.2                    | -13,8 | 4,8 |







Public, Military and Private
Services
Education, Culture, Places of
worship and Health Services


Geoapikonisis s.a.

# **Concluding Remarks**



- ☐ The accuracy for determining the buildings' 'surface' height resulting from DSM data produced by VHR satellite image stereo-pairs is of the order of 1,4 to 2,0 meters.
- The buildings' height assessment depends upon
  - ✓ pixel depth (11, 12, etc bits)
  - √ the acquisition geometry and conditions
  - ✓ The buildings' morphology (size, roof structure, etc).
- Accounting for the satellite data access and acquisition flexibility, their usage provides reliable data for urban areas monitoring.
- Valid buildings' data bases and terrain models facilitate the production of 3D buildings' models and changes' assessment





# Thank you for your attention!



**02.04.2014, Toulouse**Dorothea Aifantopoulou & Sideris Paralikidis