Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEOAPIKONISIS SA

IAASARS

cim

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



cim

IAASARS



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA





Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

#### **FIRST SLIDE Risk & Recovery Products Information Background Information:** Physiography (contours, hydrography, height spots, etc) Transportation Network, Industry and Utilities **Public Services** Land Use/ Land Cover **Risk Information (5 risk levels):** Population at Risk- per disaster Assets (Buildings, Environmental, Road Network, Bridges, critical infrastructure, etc) – per disaster opernicus **Mitigation:** Earthquake Top Level proposal on adequate (risk level/ asset basis) measures Flash Floods Presentation of alternatives Lava Flow Landslides **Soil Erosion Risk Management and Response: Coastal Erosion** Safe Shelters, Hospitals, etc and access to them Information on assets and population that may (potentially) be affected







Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



#### **EO** data ortho-rectification

GEO DB



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEO DB

GEOAPIKONISIS SA

IAASARS

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEOAPIKONISIS SA

IAASAR:

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEOAPIKONISIS SA

IAASARS

cim

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

The Azores Archipelago is located at the triple junction of the Mid-Atlantic Rift, where the Eurasian, FIRST SLIDE Nubian, and American Plates meet. It includes the Western Group (the Flores and Corvo Islands), the Central Group (the Terceira, Graciosa, Sao Jorge, Pico and Faial Islands) and the Eastern Group (the Sao Miguel and Santa Maria Islands and the Formigas Islets). All the Azores islands are of volcanic nature and emerge from an anomalously shallow and rough topographic zone. The tectonic of the islands is constrained by the deformation of the internal structures of the Azores Plateau. Geodetic data depicts that Graciosa Island follows the average movement of the Eurasian plate, the Santa Maria Island express the same vector as the Nubian plate while the other islands show a behavior of inter plate deformation.

The most recent devastating events are:

- The January 1st, 1980, 7.2 magnitude earthquake (Hirn et al., 1980) which affected Terceira, São Jorge and • Graciosa islands causing the death of nearly 60 people, and
- The July 9th, 1998, 5.8 magnitude earthquake (Senos et al., 1999) that hit Faial and Pico islands resulting in 8 • casualties, while 1,700 people were left homeless.



**Epicentres of the** July 9th, 1998 Faial earthquake & aftershocks



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

Probabilistic seismic hazards maps in terms of PGA have been prepared. These were obtained by applying the Cornell (1968) methodology as implemented in CRISIS2007 (Ordaz et al. 2007). The adopted approach follows four steps: i) sources identification, ii) assessment of earthquake recurrence and magnitude distribution, iii) selection of ground motion model, and iv) the mathematical model to calculate seismic hazard.

The state of the practice is to represent the temporal occurrence of earthquakes as well as the occurrence of ground motion at a particular site in excess of a specified level by a Poisson process. It is also assumed that: i) earthquakes are spatially and temporally independent, and ii) the probability that two seismic events will take place at the same location and at the same time is zero.







Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

The macro seismic method or empirical vulnerability approach was adopted. It is the Level 1 (LM1 method) of RISK-UE program (Milutinovic and Trendafiloski, 2003), originally proposed by Giovinazzi and Lagomarsino (2004) according to the European Macro seismic Scale (EMS-98, Grünthal, 1998). Risk-UE-LM1 is suitable for vulnerability, damage and loss assessment in urban environments with adequate estimates on seismic intensity and portfolios large enough, so that any uncertainties associated with standardized indexes can be balanced out. RISK-UE program was launched after the disastrous earthquakes of Izmit and Athens in 1999, and adapted the US methodologies (ATC13, 1985; HAZUS, 1999) into the European structural typologies.

| A CONTRACT OF |                                                  | ALC: NO.                                                                                                                      |                                                                                                                 |          |                  |             |                         |             |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|------------------|-------------|-------------------------|-------------|
|                                                                                                                 | Consequences within the AOI<br>Island: São Jorge |                                                                                                                               |                                                                                                                 | v        | ulnerability Les | et          |                         |             |
|                                                                                                                 |                                                  |                                                                                                                               | Very Low                                                                                                        | Low      | Medium           | High        | Very High               |             |
|                                                                                                                 | Populati                                         | ion (inhabitants)                                                                                                             | 847                                                                                                             | 1153     | 983              | 1059        | 463                     |             |
|                                                                                                                 | Area of t                                        | Built-up erem (sqkm)                                                                                                          | 0,176                                                                                                           | 0,339    | 0,341            | 0,335       | 0,304                   |             |
|                                                                                                                 | 1                                                |                                                                                                                               |                                                                                                                 |          |                  |             |                         |             |
|                                                                                                                 | Conseq                                           | wences within the AOI                                                                                                         |                                                                                                                 |          | Vuinerab         | ility Level | 1000 11                 |             |
|                                                                                                                 | island: São Jorge 🛛 👌                            |                                                                                                                               | Very Low                                                                                                        | Low      | Mes              | lium        | High                    | Very High   |
|                                                                                                                 |                                                  | Airport                                                                                                                       | 0                                                                                                               | 0        |                  | 3           | 0                       | 1           |
|                                                                                                                 |                                                  | Port                                                                                                                          | :0                                                                                                              | 1        |                  | L           | 0.                      | 0           |
|                                                                                                                 | POI                                              | Commercial, Public<br>& Private Services                                                                                      | 31                                                                                                              | 19       | ्र               | 25          | 11                      | 6           |
|                                                                                                                 |                                                  | Industry & Utilities                                                                                                          | 11                                                                                                              | 0        | 2                | 6           | 1                       | 0           |
|                                                                                                                 |                                                  | Place of Worship                                                                                                              | 1                                                                                                               | 2        |                  | 3           | 3                       | 2           |
|                                                                                                                 |                                                  | Other                                                                                                                         | 1                                                                                                               | 0        |                  | L           | 1                       | 1           |
|                                                                                                                 | - 88                                             |                                                                                                                               | -                                                                                                               |          |                  |             | reprinting of the first | Turner      |
|                                                                                                                 |                                                  |                                                                                                                               | Risk<br>Haza<br>Vulne<br>Expos                                                                                  |          |                  |             | Flash Flo<br>Lava F     | oods<br>low |
|                                                                                                                 | ***                                              | P 10 Public and and the later.                                                                                                | Pol                                                                                                             |          |                  |             | Lanusi                  | ues         |
|                                                                                                                 |                                                  | anavi ana                                                                                                                     | B                                                                                                               | uildings | oto              |             | Soil Ero                | sion        |
|                                                                                                                 | North State                                      | nan versionen er er<br>Starfessta Vistans en                                                                                  | The second se | ansport  | Network          | C           | oastal E                | rosion      |
|                                                                                                                 |                                                  | Lither States                                                                                                                 | E                                                                                                               | nvironm  | ent              | Tsu         |                         | 2 Storm     |
|                                                                                                                 | CPLC-IN                                          | r daal (B)<br>In the second | Mitig                                                                                                           |          |                  |             | Sugar                   |             |
| (g                                                                                                              | pernic                                           | VS 📥                                                                                                                          |                                                                                                                 |          |                  |             | Juige                   |             |



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

Population exposure mapping was realized at census block scale, accounting also for the individual buildings (on the basis of the digitized buildings footprints). Population exposure is thematically graded according to the population density in inhabited areas and **categorized** in **five** different classes (Very Low, Low, Medium, High, and Very High).

A step wise approach was adopted : i) sources identification, ii) calculation of total number of population for each census block, iii) calculation of the population density per census block area.



Is1,



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

Risk is defined as:  $\mathbf{Risk} = \text{Hazard x Exposure x Vulnerability. Hazard takes values from a continuous range, exposure is either 1 or 0 whether it is exposed to an earthquake or not and vulnerability is also a continuous variable, ranging from 0 to 1. Damage scenarios are composed in terms of discrete damage probability distribution. The calculation of the mean damage grade (<math>\mu$ D) (No damage, Slight damage, Moderate damage, Substantial to heavy damage, Very heavy damage, Destruction) has been computed per block, without any weighted factor and is the average value of the individual buildings' damage grade.

The final damage grade is defined as the one that corresponds to the highest probability of occurrence of the average  $\mu D$  per block.





**Mitigation measures:** General structural, general enclosure, wood, steel and reinforced concrete frame structures, masonry structures, etc.









Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



IAASARS



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEOAPIKONISIS SA

IAASAR:

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEOAPIKONISIS 6A

IAASAR:

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

The geodynamic framework of the Azores is dominated by an active triple junction between three of the world's large tectonic plates (the North American Plate, the Eurasian Plate and the African Plate) a condition that has translated into the existence of many faults and fractures in this region of the Atlantic. All the islands have volcanic origins, although some, such as Santa Maria, have had no recorded activity since the islands were settled.

From the beginning of the island's settlement, around the 15th century, there have been 28 registered volcanic eruptions (15 terrestrial and 13 submarine). The last significant volcanic eruption, the Capelinhos volcano (Vulcão dos Capelinhos), occurred off the coast of the island of Faial in 1957; the most recent volcanic activity occurred in the seamounts and submarine volcanoes off the coast of Serreta and in the Pico-São Jorge Channel.



8 are submarines





GEOAPIKONISIS SA

IAASAR

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

- The Lava Flow Hazard assessment has been determined through
- Studying the historical volcanic activity of the area.
- Defining the possible lava eruption areas.
- Estimating the lava flow paths and their convergence by applying a cellular automata (Gíslason<sup>1</sup>) based Lava Flow Hazard numerical model.

Creation and Activation of dense **lava eruption vent spots** over the areas, considered as lava eruption areas. Topographical characteristics (critical driving factor) of the high volcano slopes do not allow the simulated lava flow streams to converge, early, near their sources (ignition spots); For this reason and in order to assess the risk within, otherwise, "no-data" areas, a complementary risk layer, depicting the risk over such eruption zones appears at the Lava Flow Risk Assessment product. The aforementioned complementary risk layer encodes five classes of risk (very low, low, medium, high, very high) which resulted from the study of the historical volcanic activity (eruption intensity and eruption frequency) for each eruption source and further attribute the associated lava eruption areas.



IAASARS

**FIRST SLIDE** 

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

Example maps; (A) Population at Risk and (B) Transportation Networks at Risk for Sao Miguel Island. Population Risk map includes tables for Population, Built-up areas & Assets at Risk, which in conjunction with the Transportation Network at Risk table show the qualitative results of Lava Flow risk analysis.

| 11 II.                                                                                                         | _     | 3      | 1 16               | х н       | 111005       | 1            |              |               |                  |   |
|----------------------------------------------------------------------------------------------------------------|-------|--------|--------------------|-----------|--------------|--------------|--------------|---------------|------------------|---|
| THE REAL PROPERTY AND                                                                                          | _     | ,      | Papil              | station [ | Number       | of resid     | lents)       | v. 192        | -                |   |
| Lava flow<br>Risk Laval                                                                                        | Carvo | Flores | Faiat              | Pico      | San<br>Jorge | Gracio<br>sa | Tenceir<br>a | San<br>Miguel | Santa<br>Maria   |   |
| Very Low                                                                                                       | - 9   | 538    | 3634               | 1         | 467          | 8            | 2993         | 6017          | 19 -             | I |
| A DOT S LON                                                                                                    | 0     | 0      | 2073               | 138       | 82           | 1655         | 3551         | 12439         | 16               | Ļ |
| Medium                                                                                                         | p     | 0      | 3282               | 357       | 267          | 0            | H76.         | 4003          | -                | ł |
| X                                                                                                              | - 8   | 8      | 601                | 1964      | 140          | 8            | 1612         | 8126          | - 74             | Ŧ |
| Very High                                                                                                      | 0     | 05     | 3850               | 6980      | Z            | 0            | 12395        | 73454         | 1.4              | Ŀ |
| K                                                                                                              |       |        |                    | _         |              | 6            | bem          | icuş          | 2 <mark>(</mark> |   |
|                                                                                                                |       |        |                    |           |              |              | Ear          | thgu          | lake             | 2 |
|                                                                                                                | На    |        |                    |           |              | E            | Flas         | h Flo         | bod              | s |
|                                                                                                                | Vu    |        |                    |           |              | Γ            | Lav          | va F          | low              | / |
|                                                                                                                | EX    | posu   |                    |           |              |              |              |               |                  |   |
|                                                                                                                |       | Popula | tion               |           | 969          | E            | Lar          | ndsli         | des              |   |
| Annangountenang<br>Enterteiten                                                                                 |       | Build  | lings              | oto       |              |              | Soi          | Ero           | sion             | 1 |
| nere en avez anna en a |       | Trans  | stries,<br>sport l | Netwo     | ork          |              | Coast        | tal Ei        | rosi             | 0 |
|                                                                                                                | Mi    | tigat  | ion I              | Mea       |              | 25           | Tsu          | nam           | is &             |   |
|                                                                                                                |       |        |                    |           |              |              | Stor         | m Si          | irge             |   |





**FIRST SLIDE** 

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

calh stas



opernicus

Earthquake **Flash Floods** 

Lava Flow

Landslides

**Soil Erosion** 

**Coastal Erosion** 

Buildings **Industries, etc Transport Network** 

Environment Mitigation Measu

GEOAPIKONISIS SA



FIRST SLIDE

Disruption of source or advancing front of lava flow by explosives.

- Cooling advancing front of lava with water.
- Diversion using earth banks and channels.
- Lava flow retention basins.

Rabo de Peixe port

- Land-use planning.
  - Volcanoes monitoring: monitor seismic activity, monitor gas emissions, monitor ground deformation using GPS, theodolites, electrical distance measurements and remote sensing, monitor pressure changes in the underground using strain measurements.



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

#Rainfall

Earthquake

BSea Erosion

#Anthropic

#Unknown

Rainfall (LS & FF)

-Rainfall (LS)

-Earthquake

-Sea erosion

-Anthropic

-Unknown

-TOTAL

The Azores island complex is a region particularly vulnerable to slope instability due to geological, geomorphologic and meteorological factors.

The volcanic nature and morphology of the islands, namely the existence of steep slopes developed on incoherent volcanic materials, condition the occurrence of landslides, which are typically triggered by earthquakes, volcanic eruptions or more often by extreme precipitation events (75.1% in S. Miguel island).

Rainfall (LS)

Earthquake

B Sea Erosion

Anthropic

#Unkbown

(b) 200

\$ 140

\$ 120

100

80 2

60

40

20

5

180 E 160 Rainfall (LS & FF)



ŝ

#### [Environmental Setting]

Marques, R., Amaral, P., Araujo, I, Jaspar, J.L. & Zezere, J.L. 2015. Landslides on Sao Miguel Island (Azores): susceptibility analysis and validation of rupture zones using a bivariate GIS-based statistical approach. Geological Society, London, Memoirs, 44:16784, doi:10.1144/M44.13,





IAASAR:



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEOAPIKONISIS SA

IAASAR

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



IAASAR:



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA







Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

#### [Environmental Setting]

The soil erosion hazard in Azores is closely related to the recent volcanic origin soils, the unusual hydraulic characteristics related to the presence of allophane (Fontes et al., 2004), the land use and cultivation techniques management.

Topsoil characteristics are dominated by high plasticity and weak aggregate stability when the soil is wet.

Rapid erosion may also be attributed to the low clay content and to organic matter mineralization during and immediately after cultivation.

The steepness of the slopes and the slope length constitute important factors to soil erosion process.

Unprotected and bare areas along steep volcanic flanks or coast slopes present the most unfavorable conditions towards soil erosion hazard.

Fontes, J.C., Pereira, L.S. & R.E. Smith (2004). Runoff and erosion in volcanic soils of Azores: simulation with OPUS. Catena 56 (2004)199-112.













Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEOAPIKONISIS SA

**Coastal Erosion** 

**Environment** 

IAASARS

cim

- Land use / cover C
- □ Management practices P

 $\mathbf{A} = \mathbf{R} \times \mathbf{K} \times \mathbf{L} \times \mathbf{S} \times \mathbf{C} \times \mathbf{P}$ 

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEOAPIKONISIS SA

IAASARS

cim

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

The estimation of the coastal erosion risk follows a number or criteria, which are based on

seven empirical indicators. Indicator-based approaches express the susceptibility of the coast by a set of independent signs. This indicator-based approach is followed at European

Taking Sea Level Rise, local effects of land subsidence and other relevant parameters into account the coastal areas lying below 15 meter, above sea level, are considered to belong to the radius of influence of coastal erosion. For the purpose of the project, the radius of influence of coastal erosion has been defined at 500 meters.

**Radius of influence of coastal erosion** is meant to provide a proxy of the terrestrial areas, which may potentially be susceptible to coastal erosion in the coming period of 100 years.





level, including the Eurosion & Deduce projects.



GEOAPIKONISIS SA





Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Table of Ratings of Azores in terms of coastal erosion hazard |                                                             |                                                    |                                                                 |                                                                                     |                                                                                 |                                                                    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 point                                                       | 2 point                                                     | 3 points                                           |                                                                 | 1 point                                                                             | 2 point                                                                         | 3 points                                                           |  |
| Relative sea level<br>rise (best estimate<br>for next 100 years)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | < 0 mm/y                                                      | Between 0 and<br>0,40mm/y                                   | >0,40<br>Mm/Y                                      | Digital Elevation<br>Model                                      | < 5% of the region<br>area lies below 5<br>meters                                   | Between 5 and 10%<br>of the region area<br>lies below 5 meters                  | > 10% of the region<br>area lies below 5<br>meters                 |  |
| Shoreline<br>evolution trend<br>Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Less than 20% of<br>the shoreline is in<br>erosion            | Between 20% and<br>60% of the<br>shoreline is in<br>erosion | More than 60% of<br>the shoreline is in<br>erosion | Engineered<br>frontage                                          | < 5% of engineered<br>frontage along the<br>regional coastline                      | Between 5% and<br>35% of engineered<br>frontage along the<br>regional coastline | > 35% of<br>engineered<br>frontage along the<br>regional coastline |  |
| Highest water level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Less than 1,5<br>meters                                       | Between 1,5 and 3 meters                                    | More than 3 meters                                 | Near shore<br>currents                                          | Distance >100m                                                                      | Distance 50-100 m                                                               | Distance <50 m                                                     |  |
| Geological coastal type       > 70% of "likely non erodable segments"       < 40% of "likely non erodable segments"       Coemicus (Coemicus (Coemic |                                                               |                                                             |                                                    |                                                                 |                                                                                     | Earthquake                                                                      |                                                                    |  |
| Each one of the seven (7) sensitivity indicators is evaluated according to a semi-quantitative score that represents low, medium and high level of concern about the expected future risk or impact erosion.<br>The Sensitivity indicators, are then aggregated in grid scale and normalized, to respectively derive a sensitivity score, which actually defines the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                               |                                                             |                                                    | of <b>Expos</b><br>Risk I<br>Population<br>Risk I<br>Population | rd<br>rability<br>ure<br>evel assessmer<br>lation<br>ts<br>lidings<br>lustries, etc | Lava Flow<br>Landslides<br>Soil Erosion                                         |                                                                    |  |

"hazard estimation of coastal erosion".

GEOAPIKONISIS SA

Environment



FIDET CI IDE

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

**Coastal erosion** Hazard for Santa Maria Island. Every map includes one table, which shows the qualitative results of the coastal erosion. Low & very low risk is observed at ports, at areas with implemented mitigation measures as well as at high basaltic hard cliffs, which are not affected by coastal erosion.

**Risk Level Coastal erosion** Verv Verv High Med Low High Low Artificial surfaces 5,07 0.02 3,55 3,47 0,45 Land Cover/ Agricultural areas 2,57 9,79 7,57 3,32 1.07 Use Forests & semi-1,49 4,46 3,72 2,38 0,19 (sqkm) natural areas opernicus Earthquake **Flash Floods** azard Lava Flow Landslides **Soil Erosion Coastal Erosion** Buildings **Industries**, etc **Coastal erosion - Santa Maria Island Transport Network Environment** 

**FIRST SLIDE** 

**Coastal erosion Statistics for Azores islands** 



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

left-side wall (arrows) and d) exposed rocks and right-side wall (arrows)



GEOAPIKONISIS SA

IAASAI

b **Mitigation measures**: a Hardening the Shoreline Submerges Breakwaters Detached breakwaters Groins Sand Replenishment Wave Damping opernicus C **Earthquake Flash Floods** Lava Flow Landslides **Soil Erosion Coastal Erosion** Building **Industries**, etc **Transport Network Environment** Mitigation Measu Fig. Ribeira Grande: a) coastal engineering work at Ribeira Grande; b) pocket beach; c) exposed rocks and

Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

Almost all inhabited areas in Azores are located close to the coast and the exposure to storm surge hazard is significantly high. Population density is crucial for determining the sensitive zones and census data are used for generating the exposure layers. Specific assets such as industry, power and water infrastructure and religious assets were also identified.

#### **Tsunami waves propagation:**

The expected maximum tsunami wave heights in a number of forecast points along the coastlines of the islands were estimated for a specific earthquake scenario, selected based on historical data. The deformation at the source has been calculated by utilizing the Okada code (Okada, 1985). The generation and propagation of the tsunami waves was based on the SWAN model modified by JRC/IPSC. The estimation of the wave height at the designated forecast points has been made by using the Green's Law function tool that has been also incorporated in the JRC Tsunami Analysis Tool.







GEOAPIKONISIS SA



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

#### Storm surges propagation

Analysis of the historical data of storm tracks over the Azores Archipelagos indicates a return period of 17 years and a return period of 41 years for H1 and H2 hurricane categories respectively. The maximum significant wave height (wind and swell) is derived along the island's coastline for two major storms based on the NOAA WAVEWATCH III model hind cast reanalysis and the associated storm-surge risk is estimated taking also into account the coastline morphology.

#### Inland wave propagation

The inland water propagation characteristics were determined by applying the appropriate hydraulic models for the tsunami & Storm surge hazards considering the maximum wave height, the geomorphology and the hydraulic roughness, in order to estimate the affected inland areas and calculate the local water depth.

| Soverity  | Denth (m) |
|-----------|-----------|
| Sevency   |           |
| Very Low  | <2        |
| ,         |           |
| Low       | 2-4       |
| Medium    | 4-6       |
| High      | 6-8       |
| 0         |           |
| Very High | >8        |



IAASAR



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

Example maps; (A) Population at Risk and (B) Environmental Risk over the various LU/LC classes for Pico Island. Population Risk map includes Population & Built-up areas tables which in conjunction with the Environmental Risk map table show the qualitative results of the risk analysis.





Built up areas (II:

GEOAPIKONISIS SA



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

Mitigation measures include both construction (coastal defence) and site planning strategies. Structural countermeasures are especially necessary in ports to reduce intrusion into ports, but also onto the land.

For both types of measures it is important :

- to estimate the incident profile (height and current with direction) and
- to plan in a cost-effective way.





Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

| Data collection           |                     | <br>Workflow                                                          | FIRST SLIDE     |
|---------------------------|---------------------|-----------------------------------------------------------------------|-----------------|
| Updated Geospatial layers |                     | Combination Information products                                      | 1               |
| DEM                       |                     | Population density                                                    |                 |
| Census data               |                     | Secondary landslide prone areas in built-up areas                     |                 |
| Populated places          |                     |                                                                       |                 |
| Building footprints       |                     | Recovery planning                                                     |                 |
| Buildings typology & use  | Processes           | Alternative roads                                                     |                 |
| Road Network              | Spatial Analysis    | Places for:                                                           |                 |
| Hydrographic Network      |                     | <ul> <li>field hospitals</li> <li>helicopter landing spots</li> </ul> |                 |
| LULC layer                |                     | camps locations                                                       |                 |
| Protected areas           | Visibility Analysis | · gasoline tank locations                                             |                 |
| Water resources           | <u>)</u> ,          | Safe shelters in the area                                             | Earthquake      |
| High voltage power lines  |                     | Evacuation routes leading to safe shelters                            | Flash Floods    |
|                           |                     |                                                                       | Lava Flow       |
| Produced layers           |                     | Location for emergency communication systems                          | Landslides      |
| Vulnerability             |                     | Storage places for food and water                                     | Soil Erosion    |
| Hezard                    |                     |                                                                       | Coastal Erosion |
| Exposure                  |                     | Secondary risks                                                       | Surges          |
| Risk                      |                     |                                                                       | SPAT MOD        |





Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA

#### FIELD HOSPITALS, HELICOPTER LANDING SPOTS, CAMPS & GASOLINE TANK LOCATIONS

**DATA & RULES** 

| Input layer                              | Condition/use                                                                                                                                                                                                                                                        |                                |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| DEM - slope layer                        | <ul> <li>Identification of flat areas:</li> <li>Best areas: gentle slope (2-4%)</li> <li>Accepted areas: threshold slope value &lt; 10%</li> <li>Flat sites (slope: 0-2%) rejected, due to presence of serious drainage problems of waste and storm water</li> </ul> |                                |
| Populated places                         | - Estimated capacity (area of the spot)<br>- Distance from major towns                                                                                                                                                                                               |                                |
| Water resources                          | Access to water reservoirs                                                                                                                                                                                                                                           |                                |
| Road network                             | Access to existing road network                                                                                                                                                                                                                                      | Comminue 1                     |
| Hydrographic network                     | Exclusion of internal water bodies<br>Exclusion of streams & rivers (50 m buffering)                                                                                                                                                                                 | Earthquake                     |
| Electrical power grids<br>(high voltage) | Access to high voltage network for power supply                                                                                                                                                                                                                      | Flash Floods                   |
| Protected areas                          | Exclusion of protected areas                                                                                                                                                                                                                                         | Landslides                     |
| LU/LC layer                              | <ul> <li>Exclusion of highly dense vegetated areas</li> <li>Inclusion of low dense vegetated areas (for shade, erosion/ dust reduction)</li> <li>Fire prevention (buffer of 30m from highly dense vegetated areas)</li> </ul>                                        | Soil Erosion<br>Coastal Erosio |
| Public services                          | Proximity to existing infrastructure (health, education, ports & airports)                                                                                                                                                                                           | Surges                         |
| Risk layer                               | Exclusion of high risk/vulnerability areas per risk case (e.g earthquake, tsunami, etc)                                                                                                                                                                              | SPAT MOD                       |





Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



| Input layer                 | Condition/use                                                                                                         |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Populated places            | Estimated capacity:<br>- per populated place &<br>- per building (shelter)                                            |
| Building s footprints       | Area of the building                                                                                                  |
| Buildings<br>typology & use | Schools & universities, churches, indoor stadiums, commercial places like malls, hotels, military infrastructures etc |
| Risk layer                  | Exclusion of the affected buildings per case                                                                          |



opernicus

Earthquake Flash Floods Lava Flow Landslides Soil Erosion Coastal Erosion

SPAT MOD

GEOAPIKONISIS SA



Dorothea Aifantopoulou<sup>1</sup>, Giorgio Boni<sup>2</sup>, Luca Cenci<sup>2</sup>, Maria Kaskara<sup>3</sup>, Haris Kontoes<sup>3</sup>, Ioannis Papoutsis<sup>3</sup>, Sideris Paralikidis<sup>1</sup>, Christina Psichogyiou<sup>3</sup>, Stavros Solomos<sup>3</sup>, Giuseppe Squicciarino<sup>2</sup>, Alexia Tsouni<sup>3</sup>, Themos Xerekakis<sup>3</sup> <sup>1</sup>GEOAPIKONISIS S.A.P.GE., <sup>2</sup>CIMA FOUNDATION, <sup>3</sup>NOA



GEOAPIKONISIS SA

IAASARS

cin

# Thanking YOU.....





### da@geoapikonisis.gr

## www.geoapikonisis.gr